UPDATE ON THE FANCONI ANEMIA -N-ACETYLCYSTEINE (NAC) CLINICAL TRIAL

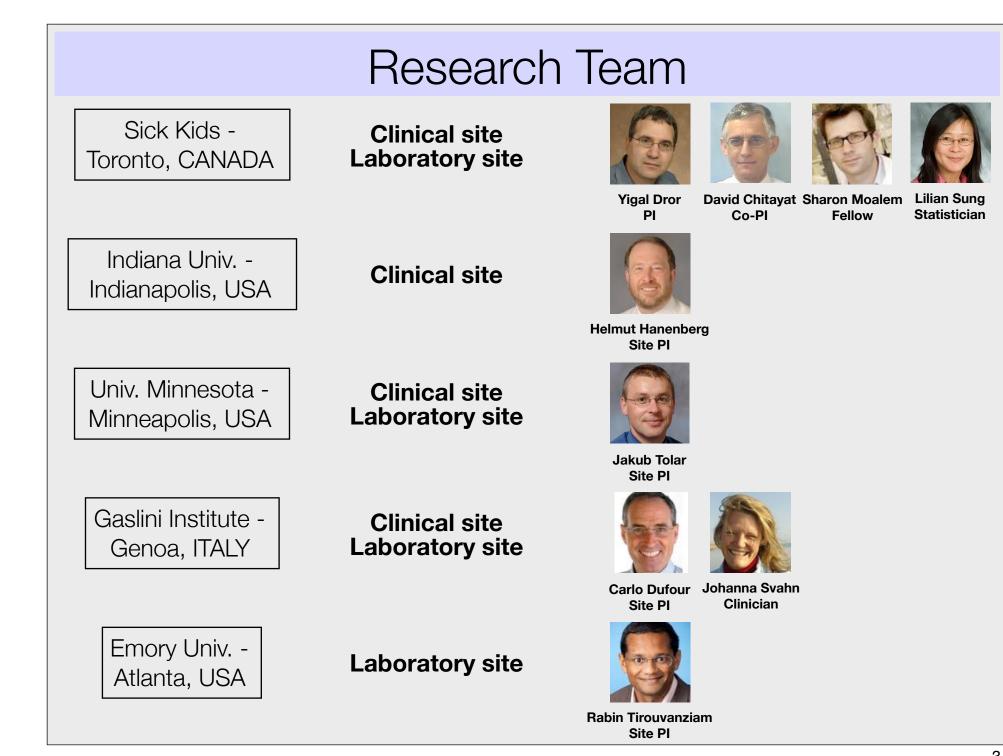
Rabindra Tirouvanziam, PhD

Department of Pediatrics, Emory University Atlanta, GA, USA

23rd Annual FA Family Meeting - June 30, 2014

Overview

• Title

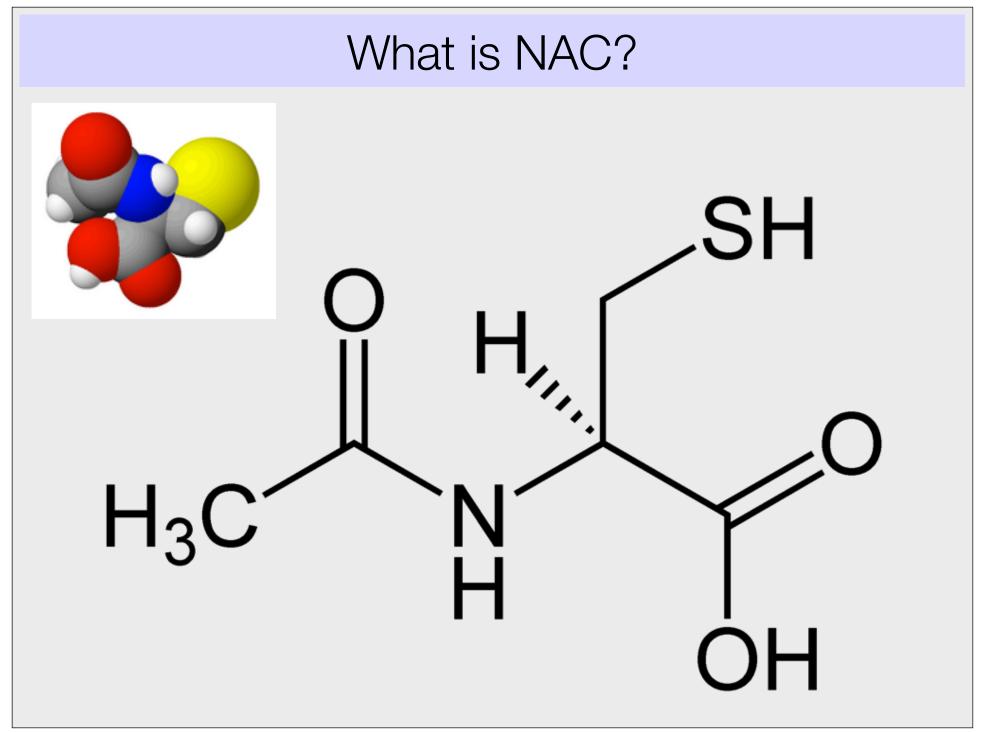

A prospective phase I/II study to evaluate N-acetylcysteine (NAC) for the amelioration of DNA damage, oxidative stress, and hematological anomalies in patients with Fanconi Anemia

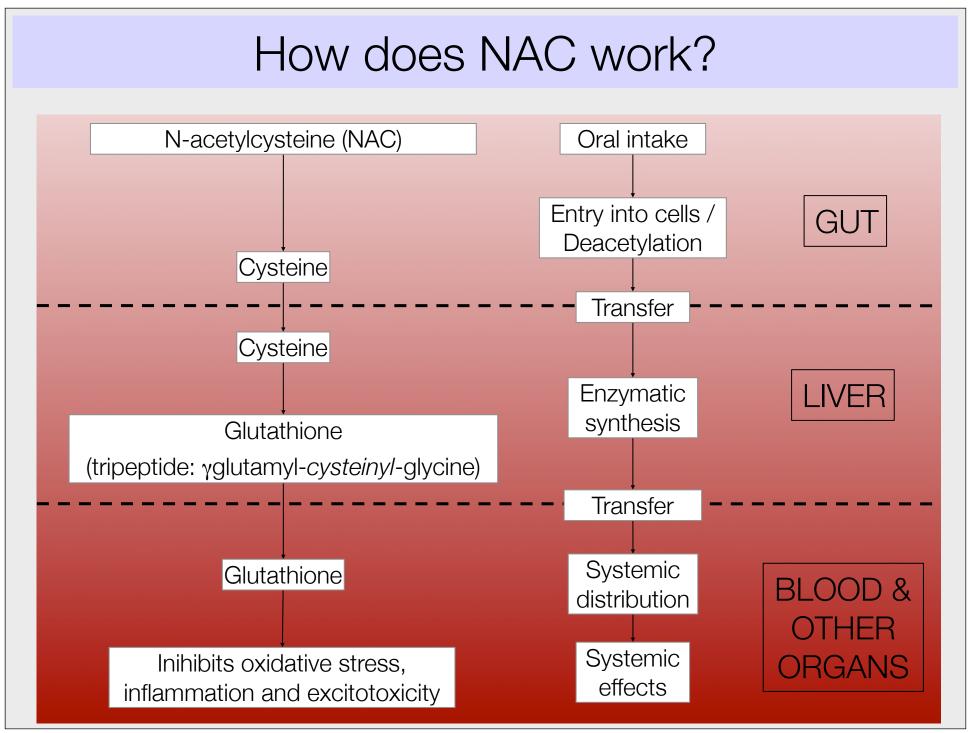
Preparatory phase

Partnering (drug company, research team)Jan 13 - Sep 13Protocol writing & review (2 rounds)May 13 - May 14Protocol and grant submissionJun 14 - Nov 14

Implementation phase

<u>First site activated</u> End of trial <u>Jan 15</u> Dec 16 / Dec 17


Rationale & hypothesis


Rationale

High oxidative stress has been documented in FA cells. High oxidative stress causes increased DNA damage, increased hematopoietic stem cell (HSC) senescence and a decreased HSC pool; thereby leading to bone marrow failure. In vivo and in vitro studies have demonstrated the ability of NAC to reduce DNA damage, reduce HSC senescence and augment reconstitution ability.

• Hypothesis

Treatment with oral NAC will be well-tolerated and may ameliorate DNA damage and oxidative stress, and progressive bone marrow failure in patients with FA.

Prior clinical experience with NAC

• NAC is safe when given orally, in high doses

In our own prior phase 2 trials (cystic fibrosis: NCT00809094, autism: NCT00627705), only significant side effect was mild digestive upset in some patients (same for placebo and NAC)

NAC inhibits various pathological processes

Oxidative stress: liver (acetaminophen), kidney (contrast agent) Inflammation: cystic fibrosis Excitability: autism, obsessive compulsive disorders

• CAUTION: Formulation matters!

NAC is not regulated as a drug; OTC formulations not reliable

Study aims

• Aim 1: Evaluate the safety of high-dose oral NAC in FA

- Clinical examination, blood and BM count, compliance
- Oncogenic potential (p53 expression in blood cells)
- Aim 2: Evaluate the ability of high-dose oral NAC to improve hematopoiesis in FA
 - Blood and BM count, frequency of transfusion
 - BM function (CD34+ cells)
- Aim 3: Evaluate the effect of high-dose oral NAC on genme stability and oxidative stress in FA
 - Chromosomal fragility, G2 phase block, DNA breaks
 - Cysteine, glutathione, aldehydes

Experimental plan

General scheme

- Prospective study
- Phase I (10 patients): safety, compliance
- Phase II (30 patients): safety, compliance and efficacy

Treatment

- All participants receive oral NAC, 0.9 g (fizzy tablet), 3 times a day for 6 months

Study sites

- Primary: Sick Kids (Toronto), Indiana Univ (Indianapolis), Univ Minnesota (Minneapolis), Gaslini Institute (Genoa)

- Secondary: Open to other sites

Target population

Inclusion criteria

- Diagnosis of Fanconi Anemia: all complementation groups*
- Cytopenia (mild to severe, single or bi or trilineage) as defined by Hb \leq 12 and/or WBC \leq 3.5 x10⁹/l and/or Platelets $<150 \times 10^9$ /l
- Bone marrow analysis demonstrating normal karyotype
- Age \geq 2 and \leq 45 years at the time of enrolment
- Subject and/or guardian able to give informed consent

Exclusion criteria

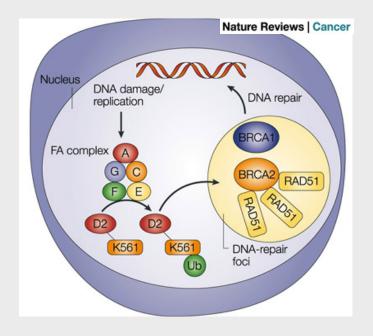
- Other investigational drugs or change in treatments within 90 d prior to screening or during trial
- Antioxidants and GSH prodrugs within 30 days prior to trial
- Known allergy to any constituent of the investigational drug
- History or evidence of malignancy / myelodysplasia
- History of hepatitis B or C or HIV
- Patients post- or anticipated to undergo stem cell transplantation
- Pregnant females

Experimental schedule

Timepoints	Clinical tests	Research samples / tests
MAIN: - Pre-treatment	- History, physical examination	- Blood: DNA damage and chromosome fragility, p53
(within 1 week)	- Complete blood count with reticulocyte hemoglobin F	 Blood and plasma: Oxidative stress (Cys /
- 6 month (end of trial)	- Blood chemistry (Alb., Alk Phos, ALT, AST, Bil., Ca, Cl,	Cys-Cys, GSH / GSSG, Glu, Aldehydes)
- 12 month (optional	Creat., Na, K, P, Prot., Urea) - Bone marrow testing (aspirate, trephine biopsy for	- Bone marrow aspirate: DNA damage, Clonogenic assay,
extension)	cytology, morphology, iron stain, cytogenetics)	 Mouth wash and urine: Banking
INTERMEDIATE: - 6, 12, 18 weeks	- History, physical examination	- N/A
	- Complete blood count	

Summary

Oxidative stress is a hallmark of FA


- FA is linked to \uparrow oxidative stress / aldehydes
- FA is linked to ↑ DNA instability, as well as
 ↓ hematological function

NAC as a systemic treatment in FA: a "low-hanging fruit"

- Advantages: safe, cheap, repurposed (fast path to FDA approval)
- Expected outcomes: ↓ oxidative stress,
 ↓ DNA instability, ↑ hematological function

Proposed phase I / II trial

- Safety of NAC (high-dose: 2.7 g per day, duration: 6 months, N=40)
- Efficacy of NAC (DNA stability, hematological function, oxidative stress)

